Mp3 Songs
MPEG-1 or MPEG-2 Audio Layer III,[4] more commonly referred to as MP3, is a patented encoding format for digital audio which uses a form of lossy data compression. It is a common audio format for consumer audio storage, as well as a de facto standard of digital audio compression for the transfer and playback of music on most digital audio players.
MP3 is an audio-specific format that was designed by the Moving Picture Experts Group (MPEG) as part of its MPEG-1 standard and later extended in MPEG-2 standard. The first MPEG subgroup – Audio group was formed by several teams of engineers at Fraunhofer IIS, University of Hannover, AT&T-Bell Labs, Thomson-Brandt, CCETT, and others.[7] MPEG-1 Audio (MPEG-1 Part 3), which included MPEG-1 Audio Layer I, II and III was approved as a committee draft of ISO/IEC standard in 1991,[8][9] finalised in 1992[10] and published in 1993 (ISO/IEC 11172-3:1993[5]). Backwards compatible MPEG-2 Audio (MPEG-2 Part 3) with additional bit rates and sample rates was published in 1995 (ISO/IEC 13818-3:1995).[6][11]
The use in MP3 of a lossy compression algorithm is designed to greatly reduce the amount of data required to represent the audio recording and still sound like a faithful reproduction of the original uncompressed audio for most listeners. An MP3 file that is created using the setting of 128 kbit/s will result in a file that is about 1/11 the size[note 1] of the CD file created from the original audio source. An MP3 file can also be constructed at higher or lower bit rates, with higher or lower resulting quality.
The compression works by reducing accuracy of certain parts of sound that are considered to be beyond the auditory resolution ability of most people. This method is commonly referred to as perceptual coding.[13] It uses psychoacoustic models to discard or reduce precision of components less audible to human hearing, and then records the remaining information in an efficient manner.
The MP3 lossy audio data compression algorithm takes advantage of a perceptual limitation of human hearing called auditory masking. In 1894, the American physicist Alfred Marshall Mayer reported that a tone could be rendered inaudible by another tone of lower frequency.[14] In 1959, Richard Ehmer described a complete set of auditory curves regarding this phenomenon.[15] Ernst Terhardt et al. created an algorithm describing auditory masking with high accuracy.[16] This work added to a variety of reports from authors dating back to Fletcher, and to the work that initially determined critical ratios and critical bandwidths.
The psychoacoustic masking codec was first proposed in 1979, apparently independently, by Manfred R. Schroeder, et al.[17] from AT&T-Bell Labs in Murray Hill, NJ, and M. A. Krasner[18] both in the United States. Krasner was the first to publish and to produce hardware for speech (not usable as music bit compression), but the publication of his results as a relatively obscure Lincoln Laboratory Technical Report did not immediately influence the mainstream of psychoacoustic codec development. Manfred Schroeder was already a well-known and revered figure in the worldwide community of acoustical and electrical engineers, but his paper was not much noticed, since it described negative results due to the particular nature of speech and the linear predictive coding (LPC) gain present in speech. Both Krasner and Schroeder built upon the work performed by Eberhard F. Zwicker in the areas of tuning and masking of critical bands,[19][20] that in turn built on the fundamental research in the area from Bell Labs of Harvey Fletcher and his collaborators.[21] A wide variety of (mostly perceptual) audio compression algorithms were reported in IEEE's refereed Journal on Selected Areas in Communications.[22] That journal reported in February 1988 on a wide range of established, working audio bit compression technologies, some of them using auditory masking as part of their fundamental design, and several showing real-time hardware implementations.
MPEG-1 or MPEG-2 Audio Layer III,[4] more commonly referred to as MP3, is a patented encoding format for digital audio which uses a form of lossy data compression. It is a common audio format for consumer audio storage, as well as a de facto standard of digital audio compression for the transfer and playback of music on most digital audio players.
MP3 is an audio-specific format that was designed by the Moving Picture Experts Group (MPEG) as part of its MPEG-1 standard and later extended in MPEG-2 standard. The first MPEG subgroup – Audio group was formed by several teams of engineers at Fraunhofer IIS, University of Hannover, AT&T-Bell Labs, Thomson-Brandt, CCETT, and others.[7] MPEG-1 Audio (MPEG-1 Part 3), which included MPEG-1 Audio Layer I, II and III was approved as a committee draft of ISO/IEC standard in 1991,[8][9] finalised in 1992[10] and published in 1993 (ISO/IEC 11172-3:1993[5]). Backwards compatible MPEG-2 Audio (MPEG-2 Part 3) with additional bit rates and sample rates was published in 1995 (ISO/IEC 13818-3:1995).[6][11]
The use in MP3 of a lossy compression algorithm is designed to greatly reduce the amount of data required to represent the audio recording and still sound like a faithful reproduction of the original uncompressed audio for most listeners. An MP3 file that is created using the setting of 128 kbit/s will result in a file that is about 1/11 the size[note 1] of the CD file created from the original audio source. An MP3 file can also be constructed at higher or lower bit rates, with higher or lower resulting quality.
The compression works by reducing accuracy of certain parts of sound that are considered to be beyond the auditory resolution ability of most people. This method is commonly referred to as perceptual coding.[13] It uses psychoacoustic models to discard or reduce precision of components less audible to human hearing, and then records the remaining information in an efficient manner.
The MP3 lossy audio data compression algorithm takes advantage of a perceptual limitation of human hearing called auditory masking. In 1894, the American physicist Alfred Marshall Mayer reported that a tone could be rendered inaudible by another tone of lower frequency.[14] In 1959, Richard Ehmer described a complete set of auditory curves regarding this phenomenon.[15] Ernst Terhardt et al. created an algorithm describing auditory masking with high accuracy.[16] This work added to a variety of reports from authors dating back to Fletcher, and to the work that initially determined critical ratios and critical bandwidths.
The psychoacoustic masking codec was first proposed in 1979, apparently independently, by Manfred R. Schroeder, et al.[17] from AT&T-Bell Labs in Murray Hill, NJ, and M. A. Krasner[18] both in the United States. Krasner was the first to publish and to produce hardware for speech (not usable as music bit compression), but the publication of his results as a relatively obscure Lincoln Laboratory Technical Report did not immediately influence the mainstream of psychoacoustic codec development. Manfred Schroeder was already a well-known and revered figure in the worldwide community of acoustical and electrical engineers, but his paper was not much noticed, since it described negative results due to the particular nature of speech and the linear predictive coding (LPC) gain present in speech. Both Krasner and Schroeder built upon the work performed by Eberhard F. Zwicker in the areas of tuning and masking of critical bands,[19][20] that in turn built on the fundamental research in the area from Bell Labs of Harvey Fletcher and his collaborators.[21] A wide variety of (mostly perceptual) audio compression algorithms were reported in IEEE's refereed Journal on Selected Areas in Communications.[22] That journal reported in February 1988 on a wide range of established, working audio bit compression technologies, some of them using auditory masking as part of their fundamental design, and several showing real-time hardware implementations.
Mp3 Songs
Mp3 Songs
Mp3 Songs
Mp3 Songs
Mp3 Songs
Mp3 Songs
Mp3 Songs
Mp3 Songs
Mp3 Songs
Mp3 Songs
Mp3 Songs
No comments:
Post a Comment